

Simulating Global Hypersonic Point-To-Point Transportation Networks

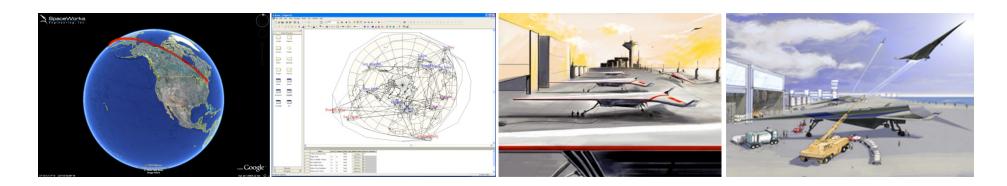
AIAA Space 2009 Conference and Exposition | Pasadena, CA | 14 September 2009

Mr. Michael Kelly

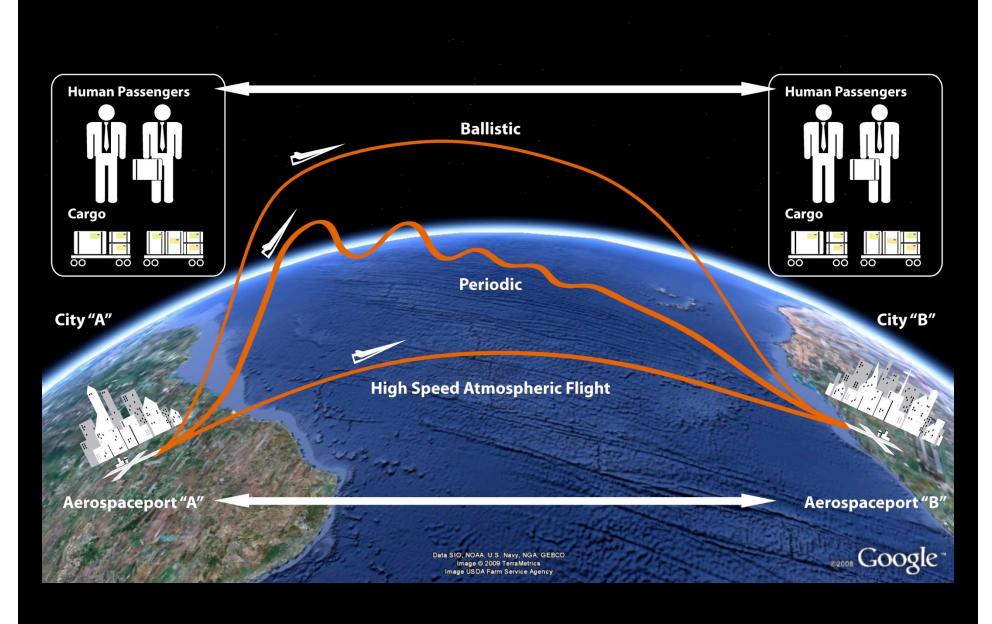
Operations Engineer | SpaceWorks Engineering | michael.kelly@sei.aero | 1+770.379.8004

Mr. A.C. Charania

President | SpaceWorks Commercial | ac@sei.aero | 1+770.379.8006


Dr. John Olds

CEO | SpaceWorks Engineering, Inc. | john.olds@sei.aero | 1+770.379.8002



- A pre-competitive volunteer group of interested parties who maintain an active discussion of global high speed point-topoint cargo/passenger delivery markets
- Public/Private participation spanning entrepreneurial space, traditional primes, consultants, spaceports, and federal agencies
- Group started meeting in October 2008.
 Goal is white paper/position paper on this emerging market in 2009

FastForward Study Overview

How: Global High Speed Point to Point Cargo/Passenger Travel

- Tier 1 Cities (7). Chosen as the initial study set based on current express package market sizes.
- Tier 2 Cities (3). Emerging regions that would be best candidates to expand the delivery network.
- Tier 3 Cities (3). Additional regions to result in more global capabilities.

Sources:

-Olds, J., Charania, A., Webber, D., Wallace, J., Kelly, M., "Is the World Ready for High-Speed Intercontinental Package Delivery (Yet)?," IAC-08-D2.4.5, 59th International Astronautical Congress, Glasgow, Scotland, September 29 - October 3, 2008.

Global City Pairs: Candidate Nodes in a PTP Cargo Delivery System

- –Global Hypersonic Shipping Time (GHoST) Calculator models:
 - Intercontinental point-to-point transportation routes
 - Package delivery services possible based on vehicle and network parameters
 - Level of improvement over existing services
- -Once network is established (e.g. FF cities), research yields data input including:
 - Great circle distances between city pairs
 - Fastest possible standard service available from UPS and FedEx, including time and price

GHoST Calculator Overview

-To accurately describe package delivery service, standardized time metrics are needed

-Delivery Hours

- Number of real-time hours that pass from package dropoff to delivery
- If a stopwatch was shipped, what time it would read at delivery

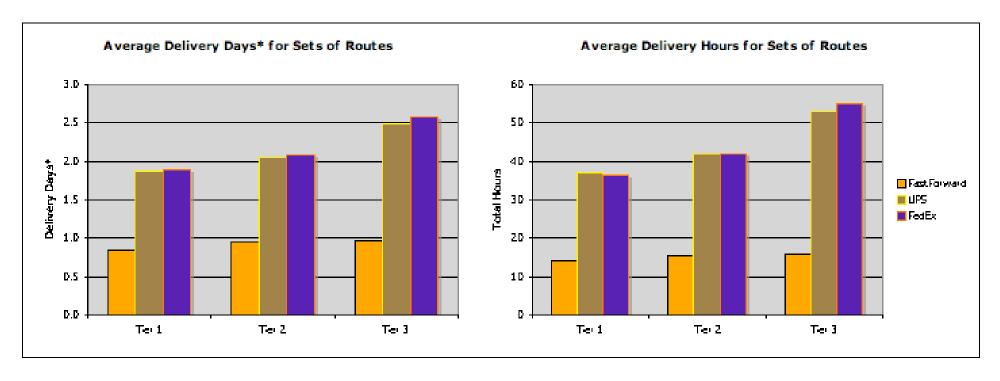
-Delivery Days

- Assumes service paradigm is afternoon pickup, morning delivery
- -Within paradigm, "next day" is 1 delivery day, etc
- Delivery by noon adds 0.1 delivery days, end of day adds 0.2
- Requiring noon pickup also adds 0.1 delivery days


Delivery Time Metrics

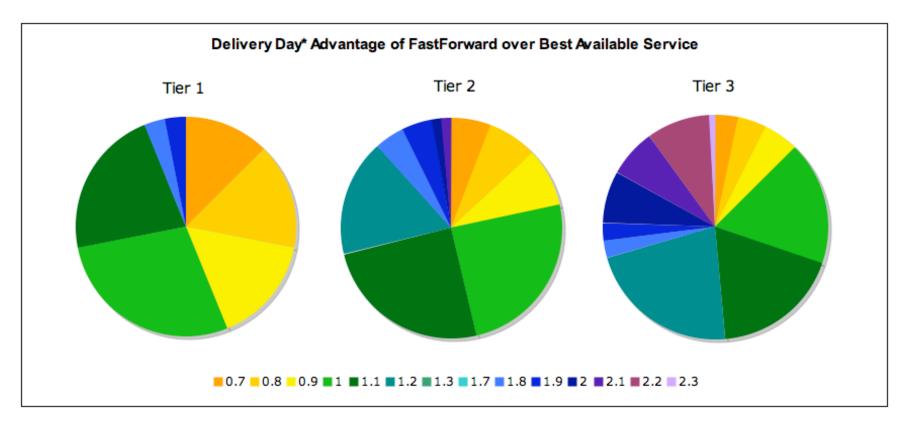
- -To analyze a particular proposed vehicle and program, GHoST requires user inputs of:
 - Maximum vehicle range
 - Unfeasibly-long routes are not considered by the calculator
 - Average vehicle cruising speed
 - Used to calculate time required for all feasible flights
 - Local/ground network logistics times for each city
 - Collection time needed from package pickup to plane wheels up
 - Distribution time needed from wheels down to package delivery
 - Both are added to flight time for each leg
 - Desired latest-available dropoff time for each route
 - Earliest delivery based off of these dropoff times
 - These often are adjusted in later stages of analysis

User Inputs



GHoST Calculator Partial Screenshot

Comparison of average delivery speed



-Shows new service's average delivery time across feasible routes and existing service average times along same set of routes

Outputs: Average Improvements

Distribution of new service's improvement over best available existing service

- Yellow tones indicate small advantages, <1 delivery day
- Greens and blues are larger advantages

Outputs: Advantage Over Existing

- -GHoST generates tables of two kinds of critical routes
- -'Opportunities' table shows routes that could have improved service with small changes
 - Extended range, earlier pickup time, or faster speed

Closest Opportunities For Improvement							
Shortest Failed Flights	Start City	End City	Distance	Needed			
Tier 1 9	New York	Hong Kong	13,033	1,033			
Tier 2 69	Dubai	Sydney	12,064	64			
Tier 3 69	Dubai	Sydney	12,064	64			
Largest Del. Margin for Error	Start City	End City	Time Margin	Speed Margin			
Tier 1 32	Tokyo	Cologne	14.66	3,449			
Tier 2 54	Mumbai	Los Angeles	15.00	3,242			
Tier 3 54	Mumbai	Los Angeles	15.00	3,242			
Smallest FF Advantage	Start City	End City	Deliv. Days*	Total Hours			
Tier 1 11	London	Los Angeles	0.7	8			
Tier 2 75	Sydney	Hong Kong	0.1	3.5			
Tier 3 75	Sydney	Hong Kong	0.1	3.5			

Current Performance Limiting Cases							
Longest Successful Flights		Start City	End City	Distance	Surplus		
Tier 1	8	New York	Shanghai	11,888	112		
Tier 2	8	New York	Shanghai	11,888	112		
Tier 3	8	New York	Shanghai	11,888	112		
Smallest Del. Margin for E	rror	Start City	End City	Time Margin	Speed Margin		
Tier 1	25	Hong Kong	Los Angeles	0.09	120		
Tier 2	25	Hong Kong	Los Angeles	0.09	120		
Tier 3	25	Hong Kong	Los Angeles	0.09	120		

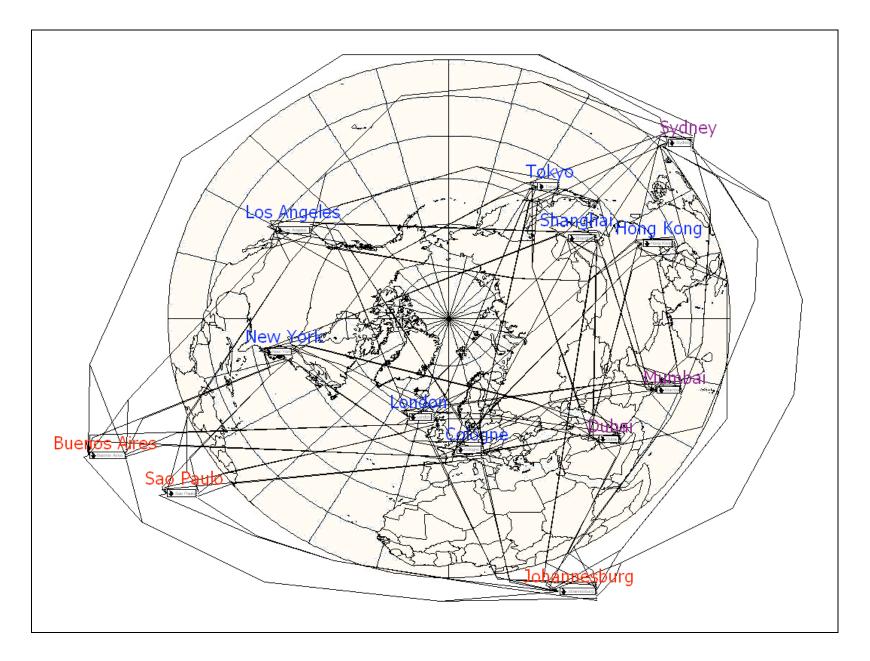
Largest FF Advantage		Start City	End City	Deliv. Days*	Total Hours
Tier 1	9	New York	Hong Kong	1.9	39
Tier 2	37	New York	Dubai	2.1	52
Tier 3	117	Buenos Aires	Dubai	4.1	103

- -'Limiting cases' table shows routes that define service sensitivity to decreasing vehicle performance
 - Minimum range, speed, collection/distribution times

Outputs: Critical Routes

GHoST Calculator Demonstration

GHoST Demonstration



- Discrete Event Simulation (DES), or the 'Event Scheduling Approach,' is a modeling tool from the Industrial Engineering community
- Any complex system can be represented as a series of discrete events
 - -System conditions change at each event
 - -System conditions remain constant in between events
 - -Some events lead to scheduling of more events
- -Can model various entity/resource interactions
- Can use probability distributions to fit real-world randomness
- -Applications include supply chains, manufacturing facilities, airports, healthcare facilities... and global point-to-point transportation networks

Discrete Event Simulation

DES Screenshot

- -Starts at time 0000
 - Time 0000 defined as midnight Sunday night GMT
 - -2400 = midnight Monday, 4800 = midnight Tuesday
- -Runs for one week, or five flights per route
- -"Flight" entities generated at set time
- -"Plane" entities generated at starting location
 - Planes take flights when both are available in same place
- -Plane/flight combination travels to destination city
 - Arrival is checked for on-time/late status
 - Plane is turned around for next flight, then combined with a new flight entity

DES Model Flow

Number of planes starting at a city

- Generally start with 1 per scheduled daily flight, then adjust up or down

-First available launch times for each flight

 Defined based on local time zone, dropoff time, collection network time

-Late arrival threshold times for each flight

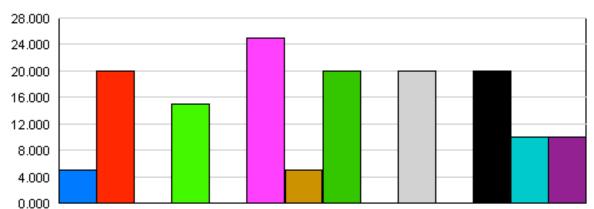
 Defined based on local time zone, distribution network time, desired delivery time


-Point-to-point flight times

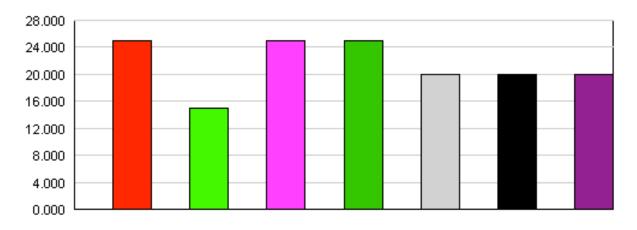
- Defined by average speed and great circle distance

-Vehicle turnaround time

DES Model Inputs




Example: Tokyo Submodel


-Starting with one plane per route in each city:

-Turnaround time of 18 hours shows some planes are late

- Turnaround time of 6 hours implies slack in system

Example Scenario

- -GHoST and the DES used to generated inputs for SEI's Cost and Business Analysis Module (CABAM)
- -Inputs included:
 - Vehicle quantities needed
 - Level of service attainable
- -CABAM also incorporates:
 - Market demand estimates
 - Availability of funding (private and government)
 - -Discount rates and other economic factors
- -End result of Net Present Value (NPV) estimates for a point-to-point network

FastForward Support

- -GHoST/DES both applicable to various kinds and scales of networks
 - E.g. supersonic business jet point-to-point service
- Insights into importance of program metrics beyond vehicle performance
 - Turnaround time as primary driver of vehicle quantity
 - Collection/distribution time as significant driver of service availability
- -Delivery days are a useful way of describing package delivery service
 - Flexible enough for worldwide network
 - Conform to existing industry standard services

Key Outcomes

